Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 29: 100541, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38327762

RESUMO

Background and Purpose: Surface Guided Radiotherapy (SGRT) for head and neck radiotherapy is challenging as obstructions are common and non-rigid facial motion can compromise surface accuracy. The purpose of this work was to develop and benchmark the Remove the Mask (RtM) SGRT system, an open-source system especially designed to address the challenges faced in radiotherapy of head and neck cancer. Materials and Methods: The accuracy of the RtM SGRT system was benchmarked using a head phantom positioned on a robotic motion platform capable of sub-millimetre accuracy which was used to induce unidirectional shifts and to reproduce three real head motion traces. We also assessed the accuracy of the system in ten humans volunteers. The ground truth motion of the volunteers was obtained using a commercial motion capture system with an accuracy < 0.3 mm. Results: The mean tracking error of the RtM SGRT system for the ten volunteers was of -0.1 ± 0.4 mm -0.6 ± 0.6 mm and 0.3 ± 0.2 mm, and 0.0 ± 0.2° 0.0 ± 0.1° and 0.0 ± 0.2° for translations and rotations along the left-right, superior-inferior and anterior-posterior axes respectively and we also found similar results in measurements with the head phantom. Forced facial motion was associated with lower tracking accuracy. The RtM SGRT system achieved submillimetre accuracy. Conclusion: The RtM SGRT system is a low-cost, easy to build and open-source SGRT system that can achieve an accuracy that meets international commissioning guidelines. Its open-source and modular design allows for the development and easy translation of novel surface tracking techniques.

2.
Radiother Oncol ; 190: 110031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008417

RESUMO

PURPOSE: Multiple survey results have identified a demand for improved motion management for liver cancer IGRT. Until now, real-time IGRT for liver has been the domain of dedicated and expensive cancer radiotherapy systems. The purpose of this study was to clinically implement and characterise the performance of a novel real-time 6 degree-of-freedom (DoF) IGRT system, Kilovoltage Intrafraction Monitoring (KIM) for liver SABR patients. METHODS/MATERIALS: The KIM technology segmented gold fiducial markers in intra-fraction x-ray images as a surrogate for the liver tumour and converted the 2D segmented marker positions into a real-time 6DoF tumour position. Fifteen liver SABR patients were recruited and treated with KIM combined with external surrogate guidance at three radiotherapy centres in the TROG 17.03 LARK multi-institutional prospective clinical trial. Patients were either treated in breath-hold or in free breathing using the gating method. The KIM localisation accuracy and dosimetric accuracy achieved with KIM + external surrogate were measured and the results were compared to those with the estimated external surrogate alone. RESULTS: The KIM localisation accuracy was 0.2±0.9 mm (left-right), 0.3±0.6 mm (superior-inferior) and 1.2±0.8 mm (anterior-posterior) for translations and -0.1◦±0.8◦ (left-right), 0.6◦±1.2◦ (superior-inferior) and 0.1◦±0.9◦ (anterior-posterior) for rotations. The cumulative dose to the GTV with KIM + external surrogate was always within 5% of the plan. In 2 out of 15 patients, >5% dose error would have occurred to the GTV and an organ-at-risk with external surrogate alone. CONCLUSIONS: This work demonstrates that real-time 6DoF IGRT for liver can be implemented on standard radiotherapy systems to improve treatment accuracy and safety. The observations made during the treatments highlight the potential false assurance of using traditional external surrogates to assess tumour motion in patients and the need for ongoing improvement of IGRT technologies.


Assuntos
Neoplasias Hepáticas , Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Estudos Prospectivos , Movimento , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia
3.
Med Phys ; 50(1): 20-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36354288

RESUMO

BACKGROUND: During prostate stereotactic body radiation therapy (SBRT), prostate tumor translational motion may deteriorate the planned dose distribution. Most of the major advances in motion management to date have focused on correcting this one aspect of the tumor motion, translation. However, large prostate rotation up to 30° has been measured. As the technological innovation evolves toward delivering increasingly precise radiotherapy, it is important to quantify the clinical benefit of translational and rotational motion correction over translational motion correction alone. PURPOSE: The purpose of this work was to quantify the dosimetric impact of intrafractional dynamic rotation of the prostate measured with a six degrees-of-freedom tumor motion monitoring technology. METHODS: The delivered dose was reconstructed including (a) translational and rotational motion and (b) only translational motion of the tumor for 32 prostate cancer patients recruited on a 5-fraction prostate SBRT clinical trial. Patients on the trial received 7.25 Gy in a treatment fraction. A 5 mm clinical target volume (CTV) to planning target volume (PTV) margin was applied in all directions except the posterior direction where a 3 mm expansion was used. Prostate intrafractional translational motion was managed using a gating strategy, and any translation above the gating threshold was corrected by applying an equivalent couch shift. The residual translational motion is denoted as T r e s $T_{res}$ . Prostate intrafractional rotational motion R u n c o r r $R_{uncorr}$ was recorded but not corrected. The dose differences from the planned dose due to T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ , ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and due to T r e s $T_{res}$ alone, ΔD( T r e s $T_{res}$ ), were then determined for CTV D98, PTV D95, bladder V6Gy, and rectum V6Gy. The residual dose error due to uncorrected rotation, R u n c o r r $R_{uncorr}$ was then quantified: Δ D R e s i d u a l $\Delta D_{Residual}$ = ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) - ΔD( T res ${T}_{\textit{res}}$ ). RESULTS: Fractional data analysis shows that the dose differences from the plan (both ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and ΔD( T r e s $T_{res}$ )) for CTV D98 was less than 5% in all treatment fractions. ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) was larger than 5% in one fraction for PTV D95, in one fraction for bladder V6Gy, and in five fractions for rectum V6Gy. Uncorrected rotation, R u n c o r r $R_{uncorr}$ induced residual dose error, Δ D R e s i d u a l $\Delta D_{Residual}$ , resulted in less dose to CTV and PTV in 43% and 59% treatment fractions, respectively, and more dose to bladder and rectum in 51% and 53% treatment fractions, respectively. The cumulative dose over five fractions, ∑D( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and ∑D( T r e s $T_{res}$ ), was always within 5% of the planned dose for all four structures for every patient. CONCLUSIONS: The dosimetric impact of tumor rotation on a large prostate cancer patient cohort was quantified in this study. These results suggest that the standard 3-5 mm CTV-PTV margin was sufficient to account for the intrafraction prostate rotation observed for this cohort of patients, provided an appropriate gating threshold was applied to correct for translational motion. Residual dose errors due to uncorrected prostate rotation were small in magnitude, which may be corrected using different treatment adaptation strategies to further improve the dosimetric accuracy.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata , Rotação , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...